几种常用最优化方法

网上有关“几种常用最优化方法”话题很是火热,小编也是针对几种常用最优化方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的优化方法(optimization)有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等。

1. 梯度下降法(Gradient Descent)

梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。 梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。

梯度下降 法的缺点:

 (1)靠近极小值时收敛速度减慢;

 (2)直线搜索时可能会产生一些问题;

 (3)可能会“之字形”地下降。

在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

比如对一个线性回归(Linear Logistics)模型,假设下面的h(x)是要拟合的函数,J( )为损失函数, 是参数,要迭代求解的值,求解出来了那最终要拟合的函数h( )就出来了。其中m是训练集的样本个数,n是特征的个数。

1)批量梯度下降法(Batch Gradient Descent,BGD)

(1)将J( )对 求偏导,得到每个theta对应的的梯度:

(2)由于是要最小化风险函数,所以按每个参数 的梯度负方向,来更新每个 :

(3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度会相当的慢。所以,这就引入了另外一种方法——随机梯度下降。

 对于批量梯度下降法,样本个数m,x为n维向量,一次迭代需要把m个样本全部带入计算,迭代一次计算量为m*n2。

2)随机梯度下降(Stochastic Gradient Descent,SGD)

(1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:

(2)每个样本的损失函数,对 求偏导得到对应梯度,来更新 :

(3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将

迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

随机梯度下降每次迭代只使用一个样本,迭代一次计算量为n2,当样本个数m很大的时候,随机梯度下降迭代一次的速度要远高于批量梯度下降方法。 两者的关系可以这样理解:随机梯度下降方法以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量。

对批量梯度下降法和随机梯度下降法的总结:

批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。

随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况。

2. 牛顿法和拟牛顿法(Newton's method &?Quasi-Newton Methods)

1)牛顿法(Newton's method)

牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数 f? ( x )的泰勒级数的前面几项来寻找方程 f? ( x ) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

具体步骤:

首先,选择一个接近函数 f? ( x )零点的x0,计算相应的 f? ( x 0)和切线斜率 f ?'? ( x 0)(这里 f '? 表示函数 f ? 的导数)。然后我们计算穿过点( x 0, f ? ( x 0))并且斜率为 f? '( x 0)的直线和 x? 轴的交点的 x 坐标,也就是求如下方程的解:

我们将新求得的点的 x? 坐标命名为 x 1,通常 x 1会比 x 0更接近方程 f ? ( x ) = 0的解。因此我们现在可以利用 x 1开始下一轮迭代。迭代公式可化简为如下所示:

已经证明,如果 f ? '是连续的,并且待求的零点 x 是孤立的,那么在零点 x 周围存在一个区域,只要初始值 x 0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果 f ? ' ( x )不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。下图为一个牛顿法执行过程的例子。

 由于牛顿法是基于当前位置的切线来确定下一次的位置,所以牛顿法又被很形象地称为是"切线法"。

关于牛顿法和梯度下降法的效率对比:

 从本质上去看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)

 根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。

注:红色的牛顿法的迭代路径,绿色的是梯度下降法的迭代路径。

牛顿法的优缺点总结:

优点:二阶收敛,收敛速度快;

缺点:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂。

2)拟牛顿法(Quasi-Newton Methods)

 拟牛顿法是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。

拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。 拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。

具体步骤:

 拟牛顿法的基本思想如下。首先构造目标函数在当前迭代xk的二次模型:

这里Bk是一个对称正定矩阵,于是我们取这个二次模型的最优解作为搜索方向,并且得到新的迭代点:

其中我们要求步长ak 满足Wolfe条件。这样的迭代与牛顿法类似,区别就在于用近似的Hesse矩阵Bk 代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵Bk的更新。现在假设得到一个新的迭代xk+1,并得到一个新的二次模型:

我们尽可能地利用上一步的信息来选取Bk。具体地,我们要求

从而得到

这个公式被称为割线方程。常用的拟牛顿法有DFP算法和BFGS算法。

原文链接: [Math] 常见的几种最优化方法 - Poll的笔记 - 博客园

关于“几种常用最优化方法”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[梦里飞花]投稿,不代表盛龙号立场,如若转载,请注明出处:https://wap.snlon.net/sn/30735.html

(4)

文章推荐

  • 安哥拉在哪里地

    网上有关“安哥拉在哪里地”话题很是火热,小编也是针对安哥拉在哪里地寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一:安哥拉在哪,要有地图2012年10月2日实时气温:罗安达晴转多云激可能有雨,23-27摄氏度万博晴有多云,16-31摄

    2025年09月20日
    132309
  • 日本留学签证在哪里办

    网上有关“日本留学签证在哪里办”话题很是火热,小编也是针对日本留学签证在哪里办寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。日本留学签证办理地点不统一,日本驻中国的大使馆一共有8个,其中驻华大使馆包括了大部分的地区。1.?日本留签证申请表2.护照原件3.户

    2025年09月25日
    122303
  • 实操教程“微乐必赢辅助器免费安装”(详细开挂教程)

     >>>您好:微乐必赢辅助器免费安装,软件加微信【】确实是有挂的,很多玩家在微乐必赢辅助器免费安装这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑微乐必赢辅助器免费安装这款游戏是不是有挂,实际上这款游戏确实是有挂的,添

    2025年09月27日
    141303
  • 娶一个比自己小12岁的女人会怎么样-

    网上有关“娶一个比自己小12岁的女人会怎么样?”话题很是火热,小编也是针对娶一个比自己小12岁的女人会怎么样?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。娶一个比自己小12岁的女人,她年轻漂亮有活力,懂得浪漫,也很有情调,这些是年轻的好处,但两个人可能就会

    2025年10月01日
    108312
  • 必看教程“微乐四川麻将外卦神器下载微信小程序”(详细开挂教程)

    >亲,微乐四川麻将外卦神器下载微信小程序这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 

    2025年10月05日
    121322
  • 玩家辅助神器:“手机斗地主记牌器”其实确实有挂

    无需打开直接搜索微信:本司针对手游进行,选择我们的四大理由:1、软件助手是一款功能更加强大的软件!无需打开直接搜索微信:2、自动连接,用户只要开启软件,就会全程后台自动连接程序,无需用户时时盯着软件。3、安全保障,使用这款软件的用户可以非常安心,绝对没有被封的危险存

    2025年10月27日
    82311
  • 南宁哪个区比较繁华

    网上有关“南宁哪个区比较繁华”话题很是火热,小编也是针对南宁哪个区比较繁华寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一:南宁有多少个区,那个区最繁荣?南宁有六个区分别是:青秀区 面积872平方千米,人口44万。邮政编码530022。区人

    2025年11月01日
    91312
  • 六安到霍山的长途汽车里程是多少公里

    网上有关“六安到霍山的长途汽车里程是多少公里”话题很是火热,小编也是针对六安到霍山的长途汽车里程是多少公里寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。驾车路线:全程约1047.3公里起点:六安市1.六安市内驾车方案1)从起点向西南方向出发,沿佛子岭中路行

    2025年11月02日
    78321
  • 大连到烟台高速通车了吗

    网上有关“大连到烟台高速通车了吗”话题很是火热,小编也是针对大连到烟台高速通车了吗寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。通车了。沈海高速于1984年6月开工建设,截至2021年4月,尚有渤海海峡、琼州海峡两个跨海通道及海南段尚未建成通车,其余路段均已

    2025年11月13日
    79320
  • 邮寄婚纱照用什么快递-

    网上有关“邮寄婚纱照用什么快递?”话题很是火热,小编也是针对邮寄婚纱照用什么快递?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。婚纱照可以进行快递吗?有的新人是在天津拍摄的婚纱照,也有的新人是度蜜月时拍的婚纱照,也有的新人是在别的城市拍的婚纱照,但是由

    2025年11月19日
    67305
  • 护手霜哪些牌子比较好?

    网上有关“护手霜哪些牌子比较好?”话题很是火热,小编也是针对护手霜哪些牌子比较好?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。一到秋季,我们的双手上的皮肤就会变得十分干枯,而到了冬季双手的皮肤又会变得皲裂,如果提前护理手上的皮肤,就能防止手上的皮肤干燥缺水

    2025年11月28日
    61307
  • 开挂辅助工具“微乐湖南麻将万能开挂器免费”详细分享装挂步骤

    亲,微乐湖南麻将万能开挂器免费这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的通过添加客服微:本司针对手游进行匹配,选择我们的四大理由:1、

    2025年12月21日
    11314

发表回复

本站作者才能评论

评论列表(3条)

  • 梦里飞花的头像
    梦里飞花 2025年12月23日

    我是盛龙号的签约作者“梦里飞花”

  • 梦里飞花
    梦里飞花 2025年12月23日

    本文概览:网上有关“几种常用最优化方法”话题很是火热,小编也是针对几种常用最优化方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。学习和工作中遇...

  • 梦里飞花
    用户122307 2025年12月23日

    文章不错《几种常用最优化方法》内容很有帮助