网上有关“一次函数的特殊位置关系”话题很是火热,小编也是针对一次函数的特殊位置关系寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。
关于平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数的证明:
如图,这2个函数互相垂直,但若直接证明,存在困难,不易理解,
如果平移平面直角坐标系,使这2个函数的交点交于原点,就会更简单。
就像这一样,
可以设这2个函数的表达式分别为;
y=ax, y=bx.
在x正半轴上取一点(z,0)(便于计算),做与y轴平行的直线,如图,
可知OC=z,AC=a*z,BC=b*z,由
勾股定理可得:
OA=√z^2+(a*z)^2
,OB=√z^2+(b^z)^2
又有OA^2+OB^2=AB^2,得
z^2+(az)^2+z^2+(bz)^2=(az-bz)^2 (因为b小于0,故为az-bz)
化简得:
z^2+a^2*z^2+z^2+b^2*z^2=a^2*z^2-2ab*z^2+b^2*z^2
2z^2=-2ab*z^2
ab=-1
即k=-1
所以两个K值的乘积为-1
注意:与y轴平行的直线没有函数解析式,与x轴平行的直线的解析式为常函数,故上述性质中这两种直线除外。
互相垂直的两条一次函数系数有什么关系
从交点引一条直线平行于y轴,再引一条平行于x轴,将由两角之和为90°互相转化。
当然,也可以以交点为原点,再建立一个直角坐标系,即:将b=0。而a,k值不变,用两直角三角形相似可证。
两条一次函数图像垂直,它们两个k值的乘积为-1是怎么推导出来的? 要详细过程!!!
直线Y=K1X+b1与直线Y2=K2X+b2互相垂直,则:K1*K2=-1。
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。
一次函数有三种表示方法,如下:
1、解析式法:用含自变量x的式子表示函数的方法叫做解析式法。
2、列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3、图像法:用图象来表示函数关系的方法叫做图象法。
扩展资料:
一次函数的性质:
1、y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2、当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3、k为一次函数y=kx+b的斜率,k=tanθ。
4、当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5、函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴。
6、平移时:上加下减在末尾,左加右减在中间。
两者的斜率k1=tanA,k2=tanB
因为两条直线垂直所以
A+π/2=B
tanA*tanB=tanA*tan(A+0.5π)=tanA*(-1/tanA)=-1=K1*K2
关于“一次函数的特殊位置关系”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[惜霜]投稿,不代表盛龙号立场,如若转载,请注明出处:https://wap.snlon.net/sn/16075.html
评论列表(3条)
我是盛龙号的签约作者“惜霜”
本文概览:网上有关“一次函数的特殊位置关系”话题很是火热,小编也是针对一次函数的特殊位置关系寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。当平面...
文章不错《一次函数的特殊位置关系》内容很有帮助